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Abstract: In this study, crude oil production in Nigeria was constructed
using SARIMA model. The study was carried out to estimate the parameters
of the model, to identify a model that best fits the production of crude oil,
and to check for the model adequacy on the quarterly production of crude
oil. Test of normality of the data was done via Anderson Darling test statistics.
Augmented Dickey-Fuller test was employed to test for stationarity of the
data. Adequacy of the model was carried out using Ljung-Box chi-square
amongst others. Finally, the results show that Seasonal Autoregressive
Integrated Moving Average (SARIMA) model best fits the production of
crude oil in Nigeria.
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1. Introduction

Models for time series data can have many forms and represent different stochastic process which
itself is defined as a statistical phenomenon that involves with time according to some probabilistic
laws. When modeling variations in the level of a process, three broad classes of practical importance
are the autoregressive (AR) models, the Integrated (I) models and the Moving Average (MA) models.
These three classes depend linearly on previous data points. The combinations of these ideas produce
autoregressive integrated moving average (ARIMA) models. ARIMA models are a class of models
that have capabilities to represent stationary as well as non-stationary time series and to produce
accurate forecasts based on a description of historical data of single variable.

However, since it does not assume any particular pattern in the historical data of the time
series that is to be forecast, this model is very different from other models used for forecasting.
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Crude oil exports positively contribute to economic growth through various ways; it promotes
specialization in the production of export commodities when there is an increase in export which
may lead to an increase in the productivity of the export sector.

Hence, there is need to derive a model for the production of crude oil, and forecast future
production of crude oil. Specifically, in this study, a model for the production of crude oil in Nigeria
was built, carried out diagnostic checking for the model adequacy and forecasts for future crude oil
production in Nigeria amongst others.

Crude oil production is a mixture of hydrocarbon that exists in liquid phase in natural
underground reservoirs and remains liquid at atmospheric pressure after passing through surface
separating facilities. Crude oil is refined to produce a wide array of petroleum products including
heating oil’s, gasoline, diesel and jet fuels, lubricants asphalt, ethane, propane, butane and many
other products used for their energy or chemical content.

Oil is for apparent reasons one of the global commodities most studied by economists. Key
areas of interest include price formation, that is, the role of speculation versus fundamental drivers;
the interaction of prices with other economic variables such as exchange rates and Gross Domestic
Product (GDP); and the drivers of oil supply. While there has been much empirical work on the
determinants of OPEC production, less effort has been devoted to a systematic investigation of
global oil production.

In this study, we take a naïve approach and estimate models to identify the relationship between
country-specific oil production decision and world oil market prices as well as price volatility,
while controlling for other important determinants of oil production decisions. In general, oil
production has been analyzed from two perspectives. Since a major feature of fossil fuels is their
nature, namely their exhaustibility and their geologic attributes, one stream of literature investigates
whether oil production develops according to economic models of exhaustible resources based on,
Hotelling (1931), or whether oil production more closely relates to the question of worldwide oil
depletion as suggested by Hubbart (1956). This stream of literature has produced mixed results
given that the assumptions required in each model, such as the geographic scope of production,
determine the predicted production pattern to some degree.

A second steam of literature examines the strategic behavior of the major oil producers. For
example, the focus is on competition, MacAvoy (1982) and revenue targets, Teece (1982) in
examining OPEC. Followers of the cartel hypothesis test if OPEC is a monopoly, an oligopoly, or
if it acts as a dominant firm. Griffin’s seminar paper (1985) is the starting point for numerous
contributions to the cartel hypothesis and also analyses the potential mechanisms used to steer
production, mostly based on current price and production data. One conclusion in non-OPEC and
OPEC countries reacts differently to current price changes, yet there are also differing interpretations
about the exact nature of the potentially strategic interactions.

Some authors (Griffin, 1985; Jones, 1990) claim that OPEC acts as a cartel or a bureaucratic
syndicate (Smith,2005;  Alhaji and Huettner, 2000) find that market results can be explained by
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Saudi Arabia’s dominant role, and a few researchers promote the ‘target revenue hypothesis” (Griffin,
1985; Ramcharran, 2002; Alhaji and Huettner, 2000), and the existence of a quota system (Kaufmann
et al.., 2008). The empirical steam of literature disregards the importance of a range of prices prior
to the current period for future oil production. However, oil production follows physical investment
with a significant time lag of seven to ten years (Wurzel et al.., 2009).

Most remarkable is the increase of oil production from non-OECD/non-OPEC countries which
increased from share in global production from 29% in 1994 to 34% in 2009, at the same time the
share of OECD producers decreased from 32% to 25%. We are interested in the major determinants
of production in all countries, that is the high prices triggering exploration activities, financial
crisis implying economic downturns and hence negative growth in oil consumption; terrorist attacks
delaying or even alienating investments and so on.

Meyler et al. (1998) drew a framework for ARIMA time series model for forecasting Irish
inflation. In their work, they emphasized heavily on optimizing forecast performance while
forecasting on minimizing out ‘of-sample forecast errors rather than maximizing in-sample”goodness
of fit”. Stergiou (1999) in his research used ARIMA model technique on a 17 years’ time series data
(1964 to 1980) with 204 observations of monthly catches of pilchard (Saedinapilchardus) from
Greek waters for forecasting up to 12 months ahead and forecasts were compared with actual data
for 1981 which was not used in the estimation of the parameters. The research found that mean
error as 14% suggesting that ARIMA procedure was capable of forecasting the complex dynamics
of the Greek pilchard fishery, which otherwise was difficult to predict because of the year to year
changes in Oceanographic and biological conditions.

Conteras et al. (2003) in their study, using ARIMA model provided a method to predict next-
day electricity prices both for short markets and long-term contracts for mainland Spain and
Californian markets. Many researchers restricted their studies using only one or two models to
World Crude Oil prices. For example, Siti et al., (2011) uses trend and volatility models, long
memory and volatility models (Kyongwook et al., 2013). Approaches like modeling seasonality,
volatility, long memory and trend etc may capture all the possible attributes in crude oil prices. The
application of one method in analyzing world crude oil production data is sometimes misleading
because behaviours of data such as seasonality, trend (upward and downward), volatility and long
memory etc are not taken into account by single approach. This study examines the production of
crude oil in Nigeria rather than crude oil prices using ARIMA and SARIMA models.

In fact, a plethora of research studies are available to justify that a careful and precise selection
of ARIMA model can be fitted to the time series data of single variable (with any kind of pattern in
the series and with auto-correlations between the successive values in the time series) to forecast
with better accuracy, the future values in the series.

The structure of the paper is as follows: Section 1 introduces the work. Section 2 presents
methodology on SARIMA. Section 3 presents the data, empirical results as well as model scenarios.
Section 4 gives the discussion of results, conclusion and recommendations/ policy implications.
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2. Methodology

2.1 The Autoregressive Moving Average (ARMA) Models

An ARMA(p, q) model is a combination of AR(p) and MA(q) models and is suitable for univariate
time series modeling. In a AR(p) model, the future value of a variable is assumed to be a linear
combination of p past observations and a random error together with a constant term.

Mathematically, the AR(p) model can be expressed as:
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process at time t: �
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(i = 1, 2, ..., p) are model parameters and c is a constant. The integer constant p

is known as the order of the model. At times, the constant term is omitted in the model for simplicity.
For estimating parameters of a AR process using the given time series, it is done via the Yule-Walker
equation. Just as a AR(p), a MA(q) model uses past errors as the explanatory variables.

The MA(q) model is given by
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where, � is the mean of the series: �
j
(i = 1, 2, ..., q) are the model parameters and q is the order of

the model, random shocks (�
i
) are assumed to be a white noise process that is; a sequence of

independent and identically distributed (i.i.d) random variables with mean zero and a constant
variance �2.

Generally, the random shocks are assumed to follow the typical normal distribution. Thus,
conceptually a moving average model is a linear regression of the current observation of the time
series against the random shocks of one or more prior observations. Fitting an MA to a time series
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is more complicated than fitting an AR model because in the former one the random error terms are
not fore-seeable. Autoregressive (AR) and moving average (MA) models can be effectively combined
together to form a general and useful class of tie series model known as the ARMA model.

Mathematically, a ARMA(p, q) model is represented by

1
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t i t j t j t
i j

y c y � �
� �

� � � � � � � �� � (5)

Usually, ARMA models are manipulated using the lag operator notation. The lag or backshift
operator is defined as Ly

t
 = y

t–1. Polynomials of lag operator are used to represent ARMA model as
follows:

ARMA(p, q) : �(L)y
t
 = �(L)�

t
(6)

Given,

1

( ) 1
p

i
i

i

L L
�

� � � ��  and 
1

( ) 1 .
q

j
j

j

L L
�

� � � ��
Where, AR(p) process can be always be written in terms of a MA(q) whereas, for a MA(q)

process to be invertible, all the roots of the equation �(L) = 0 must be outside the unit circle. This
condition is known as the invertibility condition for an MA process. The advancement of ARMA
model is Autoregressive Integrated Moving Average (ARIMA) model in which the integration
aspect is introduced to accommodate non-stationary data. This model has been used by many
researchers in analysis of time series data.

In the work of Raymond (1997) suggested that the following two questions must be answered
to identify the data series in a time series analysis viz:

(i) whether the data are random and
(ii) have any trends?
This is followed by another three steps of model identification parameter estimation and testing

for model validity. If a series is random, the correlation between successive values in a time series
is close to zero. If the observations of time series are statistically dependent on each another, then
the ARIMA is appropriate for the time series analysis.

2.2 Autoregressive Integrated Moving Average (ARIMA) Model

The ARIMA model described above can be used for stationary time series data. However, in practice
many time series such as those related to socio-economic and business show non-stationary behavior.
Time series which contain trend and seasonal patterns are also non-stationary in nature. Thus, from
application view point ARMA model are inadequate to properly describe non-stationary time series,
which are frequently encountered in practice. For this reason we proposed ARIMA model which is
a generalization of an ARMA model to include the case of non-stationarity as well.
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In ARIMA model, a non-stationary time series is made stationary by applying finite differencing
of the data points. The mathematical formulation of the ARIMA (p, d, q) model using lag polynomials
is given as;

�(L)(1 – L)dy
t
 = �(L)�

t
(9)

The equation (9) can be re-written as:
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Here, p, d and q are integers greater than or equal to zero and refer to the order of the
autoregressive, integrated and moving average parts of the model respectively. The integer d controls
the level of differencing. Generally, d = 1 is enough in most cases. When d = 0, then it reduces to an
ARMA(p, q) model.

An ARIMA(p, 0, 0) is nothing but the AR(p) model and ARIMA(0, 0, q) is the MA(q) model.
ARIMA(0, 1, 0), that is, y

t
 = y

t+1 + �
t
 is a special one and known as random walk model. It is widely

used for non-stationary data in economic data and stock price series. At the model identification
stage, one needs to decide how many autoregressive (p) and moving average (q) parameters are
necessary to yield an effective but still parsimonious model of the process i.e. it has the fewest
parameters and greatest number of degrees of freedom among all models that fit the data. Least
square and maximum likelihood estimator is usually used for the parameter estimation which is
done after identified the specific number and type off ARIMA parameters to be estimated. The
major tool used in the identification phase and plots of the series, correlograms of autocorrelation,
ACF and PACF.

The data used in this study was collected from the statistical bulletin of organization of petroleum
exporting countries (OPEC). It is a secondary data because it was extracted from their records and
the period considered is from 1985-2015 and the statistical package used was R-Program version
2.3.

2.3 Box-Jenkin (ARIMA) Model

The approach of Box-Jenkins methodology in order to build ARIMA model, normality tests are
used to determine if a data set is well modeled by a normal distribution and to compare how likely
it is for a random variable underlying the data set to be normally distributed.

2.4 Anderson-Darling Test

This is a statistical test of whether a given sample of data is drawn from a given probability
distribution: the test assumes that there are no parameters to be estimated in the distribution being
tested when applied to testing if normal distribution adequately describes a set of data. It is one of
the most powerful statistical tools for detecting most departures from. The test statistic is given as:

A2 = n – s. (7)
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The test statistic is now compared with the critical values of the theoretical distribution; the

null hypothesis is rejected if p-value is less than the significance level.

2.5 Test for Stationarity

A stationarity time series is one whose statistical properties such as mean, variance, autocorrelation
and so on are all constant over time. Stationarizing a time series through differencing (where needed)
is an important part of the process of fitting an ARIMA model. Thus, finding the sequence of
transformations needed to stationarize a time series often provides important clues in the search for
an appropriate forecasting model.

2.6 Augmented Dickey-Fuller Test (ADF)

This is used to test whether a unit root is present in an autoregressive model. The test is defined for
the hypothesis H0 : � = 0; the data has a unit root (not stationary) against H1 : ����0; the data has no
unit root (is stationary). The Dickey-Fuller unit root test is based on the following three regressive
forms:

(i) �Y
t
 = �Y

t–1 + U
tt
 (without constant and trend)

(ii) �Y
t
 = � + �Y

t–1 + U
t
 (with constant) (8)

(iii) �Y
t
 = � + �T + �Y

t–1 + U
t
 (with constant and trend)

If the p-value is less than the level of significance �, we reject the null hypothesis and conclude
that there is no unit root in the data–it is stationary. If unit root exist, the data can be differenced to
remove unit root from the data, if such data is differenced once and there is no unit root, then it
becomes an ARMA model of order one ARI(1)MA, if twice it becomes ARI(2)MA and so on.

2.7 Autocorrelation and Partial Autocorrelation Function (ACF and PACF)

To determine a proper model for a given time series data, it is necessary to carry out the ACF and
PACF analysis. These statistical measures reflect how the observations in a time series are related
to each other. The ACF is a way to measure the linear relationship between an observation at time
t and the observations at previous times. If we assume an AR(k) model, then we may wish to only
measure the association between y

t
 and y

t–1 and filter out the linear influence of the random variables
that lies in between (i.e., y

t–1, yt–2, ..., yt–(k–1)) which requires a transformation on the time series. By
calculating the correlation of the transformed time series, we obtain the partial autocorrelations
(PACF). The PACF is most useful for identifying the order of autoregressive model. Specifically,
single partial autocorrelations that are significantly different from zero indicate lagged terms of y
that are useful predictors of y

t
.
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2.8 Diagnostic Check

The Ljung-Box statistic test is a diagnostic tool used to test whether any group of autocorrelations
of a time series are different from zero. Instead of testing randomness at each distinct lag, it tests
the overall randomness based on a number of lags. The Ljung-Box test is commonly used in ARIMA
modeling and it is applied to the residuals of a fitted ARIMA model, not only the original series.
The Akaike Information Criterion (AIC) estimates the quality of each model relative to each of the
other models and it provides a means for model selection. Another straight form and common
measure of the reliability of the model is the accuracy of its forecasts generated based on a partial
data so that the forecast can be compared with the original observations.

However, a good model should not only provide sufficiently accurate forecasts, it should be fit
and produce statistically independent residuals that contain only noise and no systematic components.

3. Data Analysis and Empirical Results

The data used in this study was collected from the statistical bulletin of organization of petroleum
exporting countries (OPEC). It is a secondary data because it was extracted from their records and
the period considered is from 1985-2015 and the statistical package used was R-Program version 2.3.

The descriptive statistics analysis results are presented in the table 1.

Figure 1: The plot of Crude Oil production
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Table 1: Descriptive Statistics of Crude Oil Production in Nigeria.

Year Minimum Maximum Mean Std. Dev. Skewness Kurtosis

1985 1125 1565 1.3888E3 159.1901 –0.267 –1.341

1986 1016 1789 1.4967E3 259.0073 –0.759 –0.671

1987 1197 1761 1.4589E3 170.7771 0.158 –1.049

1988 1183 1451 1.3396E3 87.1055 –0.791 –0.347

1989 1360 1560 1.4500E3 61.7547 0.122 –0.565

1990 1474 1879 1.7147E3 141.7452 –0.562 –0.515

1991 1731 1929 1.8094E3 88.2275 0.414 –1.782

1992 1809 1930 1.8919E3 33.3206 –1.682 2.656

1993 1900 2100 1.9812E3 64.0712 0.484 –0.939

1994 1975 2175 2.0500E3 58.8527 0.971 0.325

1995 1545 2085 1.9322E3 143.6187 –1.840 4.761

1996 1855 2110 1.9925E3 69.9838 –0.244 0.137

1997 1965 2038 2.0006E3 23.8916 0.103 –1.087

1998 2026 2208 2.1296E3 45.9831 –0.683 1.643

1999 1960 2380 2.1541E3 125.3856 0.004 –0.707

2000 2010 2190 2.1292E3 54.0132 –1.320 0.898

2001 2030 2287 2.1648E3 77.5779 0.092 –0.417

2002 2140 2360 2.2564E3 77.0802 –0.161 –1.105

2003 2050 2200 2.1178E3 43.6601 0.038 –0.296

2004 1994 2479 2.2741E3 163.2619 –0.512 –1.151

2005 2210 2395 2.3290E3 50.0854 –1.003 2.008

2006 2430 2695 2.6267E3 91.1127 –1.307 0.746

2007 2370 2560 2.4396E3 64.4719 0.563 –0.690

2008 2230 2430 2.3500E3 66.3668 –0.962 –0.426

2009 2060 2330 2.1651E3 75.7093 0.701 0.604

2010 2051 2450 2.2080E3 122.1043 0.508 0.042

2011 2310 2580 2.4467E3 88.7625 –0.270 –0.927

2012 2400 2640 2.5510E3 88.9883 –0.839 –0.804

2013 2280 2640 2.5200E3 111.5185 –1.223 0.905

2014 2260 2420 2.3667E3 56.6221 –0.984 –0.187

2015 2320 2520 2.4236E3 60.5692 –0.563 –0.084
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Anderson-Darling Test

H0 : The variable from which the sample was extracted follows a Normal distribution

H1 : The variable from which the sample was extracted does not follow a Normal distribution
The Anderson-Darling test-statistic is 5.019 with p-value 1.973e–12

Since p-value is less than 0.05, we therefore conclude that the data is not normally distributed.

Test for Stationarity (Augmented Dickey-Fuller Unit Root Test)

The hypotheses are:
H0 : Crude oil production has a unit root (is not stationary)
H1 : Crude oil production is stationary
Augmented Dickey-Fuller test statistic is –6.5834 with probability 0.01.
Since the p-value (0.01) is less than 0.05, we reject null hypothesis, hence conclude that the

data does not have a unit root, the data is stationary.

Figure 2: Histogram of quarterly Crude Oil Production in Nigeria
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Table 2: Sample ACF and PACF for Crude Oil Production in Nigeria

Lag ACF PACF

1 1 0.749812

2 0.749812 0.040936

3 0.580139 –0.13043

4 0.390878 –0.16371

5 0.193207 –0.02161

6 0.058479 0.150027

7 0.028187 –0.04259

8 –0.01668 –0.16853

9 –0.08383 –0.11676

10 –0.14468 –0.10801

11 –0.23190 –0.06363

12 –0.31161 –0.01967

13 –0.34176 –0.07021

14 –0.35317 –0.17035

15 –0.38142 –0.08571

16 –0.37286 –0.09220

17 –0.37466 –0.11513

18 –0.38917 –0.04564

19 –0.35785 –0.15420

20 –0.33998 –0.12723

21 –0.30858 –0.06846

22 –0.24412 –0.02439

23 –0.15696 –0.08952

24 –0.09140 –0.15096

25 –0.03072 –0.21338
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Fig. 4 missing (NA in word file)
Figure 4: PACF Plot for Crude Oil Production in Nigeria

Figure 3: ACF Plot for Crude Oil Production in N igeria
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Fitting ARIMA model to the Crude Oil Data

Table 3

Table 3: Fitting ARIMA (1, 0, 1) model to the Crude Oil Data

Model Coefficient Standard Error

AR(1) 0.7763 0.0416

MA(1) –0.0407 0.0594

Intercept 2057.1809 53.5966

AIC = 4989.64

Table 4: Fitting ARIMA (1, 0, 2) model to the Crude Oil Data

Model Coefficient Standard Error

AR(1) 0.7211 0.0504

MA(1) –0.0378 0.0655

MA(2) 0.1798 0.0684

Intercept 2057.114 50.774

AIC = 4984.64

Table 5: Fitting ARIMA (1, 0, 3) model to the Crude Oil Data

Model Coefficient Standard Error

AR(1) 0.5323 0.0718

MA(1) 0.1488 0.0717

MA(2) 0.3345 0.0517

MA(3) 0.2906 0.0608

Intercept 2057.8118 45.9822

AIC = 4964.28

Using autoarima function in R-Programming it generated a SARIMA model; this had been
indicated in the time plot that there is seasonality in the data set.
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Table 6: Fitting SARIMA (3, 0, 1)(1, 0, 2)4 model to the Crude Oil Data

Model Coefficient Standard Error

AR(1) 1.5828 0.0529

AR(2) –0.4325 0.0983

AR(3) –0.2152 0.0544

MA(1) –0.9667 0.0133

SAR(1) –0.4891 0.1385

SMA(1) 0.5320 0.1401

SMA(2) 0.2438 0.0667

Intercept 2065.4283 7.7326

AIC = 4949.96

Diagnostic Checking

Over fitting is a method of diagnostic checking. In this study the method of over fitting additional
parameters were included in the autoregressive function in order to fit the ARIMA model.

Table 7: Table for diagnostic checking using AIC

Model ARIMA ARIMA ARIMA SARIMA
(1, 0, 1) (1, 0,2) (1, 0, 3) (3,0, 1)(1, 0, 2)4

AIC 4989.64 4984.64 4964.28 4949.96

From the table above, it can be seen that the seasonal ARIMA model has the lowest AIC.

Table 8: Ljung-Box Statistics

Model Chi-Square p – value

ARIMA (1, 0, 1) 0.035824 0.8499

ARIMA (1, 0, 2) 0.163270 0.6862

ARIMA (1, 0, 3) 0.051439 0.8206

SARIMA (3, 0, 1)(1, 0, 2)4  0.020134 0.8872
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Table 9: Forecasts crude oil production for January to December 2017 are:

Months Forecasts

January 2380.215

February 2283.373

March 2210.253

April 2237.723

May 1966.295

June 1957.151

July 1792.439

August 1787.543

September 1834.456

October 1893.858

November 1876.441

December 1848.832

Table 10: Forecasts crude oil productions for January to December 2018 are:

Months Forecasts

January 1891.523

February 1950.396

March 1904.028

April 1953.245

May 2053.476

June 2089.145

July 2089.145

August 2138.162

September 2185.854

October 2168.741

November 2154.112

December 2163.208

4. Discussion of Results

From the time plot, it can be seen that the production of crude oil in Nigeria is seasonal in nature.
Using Box-Jenkins approach, the model for the quarterly crude oil production in Nigeria is achieved
by estimating the autocorrelation (ACF) and the partial autocorrelation function (PACF). The
selection of a tentative time series is frequently accomplished by matching estimated autocorrelations
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with the theoretical autocorrelation. The matching of the first 25 estimated sample autocorrelations
and partial autocorrelations of the underlying stochastic processes suggested that the series were
stationary with the ACF, PACF.

The estimated ACF and PACF are shown in table 2. From the autocorrelation function plot
(figure 3), it was shown that there is a gradual decay in the correlation between various lags. Also,
from the PACF plot (figure 4), there was a cutoff at lag 1 indicating that the model is an MA(1) for
the quarterly crude oil production in Nigeria. Several related ARIMA model was fitted for the data
ARIMA(1, 0, 1), ARIMA(1, 0, 2), and ARIMA(1, 0, 3). Using auto arima package in R software to
select the best fitted model, seasonal ARIMA SARIMA (3, 0, 1)(1, 0, 2)4 was fitted. Diagnostic
checking shows that amongst the fitted model, the SARIMA model is best as it has the least AIC
values. The SARIMA(3, 0, 1)(1, 0, 2)4  means ARIMA(p, d, q) � (P, D, Q)S which “p” is non seasonal
AR order, “d” is non seasonal differencing, and “q” is non seasonal MA order, “P” is seasonal AR
order, “D” is seasonal differencing, “Q” is seasonal MA order and “S” is time span of repeating
seasonal pattern. SARIMA(3, 0, 1)(1, 0, 2)4 has a non seasonal AR(3), non seasonal MA(1), a seasonal
AR(1), a seasonal MA(2), no differencing and the seasonal period is S(4).

The Ljung-Box statistics for all the models gives a non-significant p-value which indicates
that the residual are not correlated, which implies that the models are adequate. Thus, the four (4)
models fitted are:

5. Conclusion and Recommendation

In conclusion, the SARIMA(3, 0, 1)(1, 0, 2)4  has the lowest AIC of 4949.96 and chi-square p-value
of 0.8872 which make it better than the other three (3) models. It was seen that the production of
crude oil can be seasonal. In such a case, SARIMA model is recommended for modeling crude oil
production in Nigeria. Therefore, policy can be made to follow when there is high volume of
production and when there is low volume of production and it will help the government of Nigeria
planning purposes and for making future policies in order to generate more income from crude oil
production sector. The major drawback of this work is non-availability of recent data in the study
area.
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